Mark scheme - Amount of Substance

Questio n		Answer/Indicative content	Marks	Guidance
1	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5.8 award 3 marks $\begin{gathered} n\left(\mathrm{SrCl}_{2}\right)=\frac{1.62}{158.6}=0.0102 \ldots \ldots(\mathrm{~mol}) \checkmark \\ n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1.07}{18}=0.0594 \ldots \ldots .(\mathrm{mol}) \\ \mathbf{x}=\mathrm{SrCl}_{2}: \mathrm{H}_{2} \mathrm{O}=\frac{0.0594 \ldots \ldots}{0.0102 \ldots \ldots} \\ =5.8 \end{gathered}$	3 (AO3.1x 2) (AO3.2)	Calculator: 0.01021437579 Calculator: 0.05944444444 ALLOW ECF from $n\left(\mathrm{SrCl}_{2}\right)$ and/or $n\left(\mathrm{H}_{2} \mathrm{O}\right)$ Answer must be to TWO significant figures ALLOW 2 marks for 5.83 (answer must be to 2 SF) Examiner's Comments Most students managed to gain some marks on this question. The most common error was rounding to 6 , something they have been taught to do for water of crystallisation. This caused them to lose a mark as the question asked for two significant figures. Many rounded too early so a variety of responses were seen.
	ii	To make sure all the water had been removed \checkmark	1(AO3.4)	IGNORE just 'to weigh to constant mass' Examiner's Comments The majority of candidates answered this correctly, the main incorrect answer was "to achieve constant mass".
	ii	Use balance that weighs to $3 /$ more decimal places \checkmark Use a larger mass (of hydrated strontium chloride) \checkmark	$2(\mathrm{AO} 3.4 \times$ 2)	ALLOW more precise/more accurate/ more sensitive/higher resolution/smaller division/weigh to 0.001 IGNORE 'less error/smaller interval balance’ IGNORE any reference to lid on crucible (water can't escape) IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results /larger sample size, etc.

2.1.3 Amount of Substance

				Examiner's Comments Most candidates identified either using a larger mass or a more accurate balance, not many stated both. The most common incorrect answers involved heating for longer or taking less measurements.
		Total	6	
2		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{6 0} \mathbf{c m}^{\mathbf{3}}$ award $\mathbf{3}$ marks $\begin{aligned} & n(\mathrm{HCl})=\frac{50.0}{1000} \times 0.100=5.00 \times 10^{-3}(\mathrm{~mol}) \\ & n(\mathrm{H})=\frac{5.00 \times 10^{-3}}{2}=2.50 \times 10^{-3}(\mathrm{~mol}) \\ & \text { Volume }=2.5(0) \times 10^{-3} \times 24.0 \times 1000 \\ & =60(.0) \mathrm{cm}^{3} \checkmark \end{aligned}$	$\begin{gathered} \text { 3(AO2.6x } \\ 3) \end{gathered}$	ALLOW $120 \mathrm{~cm}^{3}$ for 2 marks ($\mathrm{no} \div 2$) ALLOW $240 \mathrm{~cm}^{3}$ for 2 marks ($\times 2$ not $\div 2$) IGNORE absence of trailing zeroes, e.g. for 0.100, ALLOW 0.1 ALLOW ECF from $n(\mathrm{HCl})$ ALLOW ECF from $n(\mathrm{HCl})$ and/or $n\left(\mathrm{H}_{2}\right)$ Examiner's Comments This was a well answered question, with the majority of candidates obtaining all 3 marks
		Total	3	
3	a	Oxidised AND (Mg) transfers/loses/donates 2 electrons \checkmark 2 essential	1	ALLOW Mg loses 6 electrons: 3 Mg in equation ALLOW $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$ IGNORE oxidation numbers (even if wrong) Examiner's Comments Despite the question clearly asking for a response in terms of the number of electrons transferred, most candidates answered in terms of oxidation number changes. Candidates are recommended to read the question and to answer in terms of its requirements. Underlining 'number of electrons' may have helped candidates to answer the question that had been set.
		FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks \qquad $n\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=\frac{1.24 \times 50.0}{1000}=0.062(0)(\mathrm{mol})$ $n(\mathrm{Mg}) \quad=\frac{3}{2} \times 0.062(0)=0.093(0)(\mathrm{mol}) \vee$ mass of $\mathbf{M g}=0.0930 \times 24.3=2.26(\mathrm{~g}) \checkmark$	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for 0.0620) ALLOW ECF from n (H3PO4) ALLOW ECF from $n(\mathrm{Mg})$

		ALLOW use of $R=8.31 \rightarrow 314.4504 \rightarrow 314$ to 3SF		IGNORE use of 24/24000 for molar volume e.g. $3.2(0) \times 10^{-3} \times 24000=768$ scores zero $8(.00) \times 10^{-3} \times 24000=292$ scores 1st mark only Examiner's Comments Almost all candidates realised that the calculation required the ideal gas equation. Most candidates correctly rearranged the equation and used the data from the question to obtain a value for the volume of phosphine. The most common errors were with conversion of units into Pa and m 3 . It is recommended that candidates learn how to carry out these conversions. In their calculations, many candidates used the amount of phosphoric acid, 3.20 $\times 10^{-3} \mathrm{~mol}$, rather than $8.00 \times 10^{-3} \mathrm{~mol}$ of phosphine, obtaining a volume of 1258 cm 3 . Error carried forward ensured that 3 of the available 4 marks could be credited, provided that the working was clear. The exemplar shows such a response. Answer $=315 \mathrm{~cm}^{3}$ Exemplar 3 (b) Phosphine, PH_{3}, is a gas formed by heating phosphorous acid, $\mathrm{H}_{3} \mathrm{PO}_{3}$, in the absence of air: $4 \mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PH}_{3}(\mathrm{~g})+3 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})$ (i) $3.20 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is completely decomposed by this reaction. Calculate the volume of phosphine gas formed, in cm^{3}, at 100 kPa pressure and $200^{\circ} \mathrm{C}$. B $100 \times V=\left(3.2 \times 10^{-2}\right) \times 8.314 \times 473$ $100 \times v=125.840704$ $V=1.2584 .0704$ $\begin{aligned} & =1.26 \mathrm{dm}^{3} \times 1000 \\ & (\mathrm{LN} \cdot 0.80 \\ & =1258.41 \mathrm{~cm}^{3} \end{aligned}$
	ii	$4 \mathrm{PH}_{3}+8 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4010}+6 \mathrm{H}_{2} \mathrm{O} V$	1	ALLOW multiples Examiner's Comments Most candidates were able to write a correctly balanced equation for this reaction.
		Total	13	
4		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=76.5$ (\%) award 3 marks $\begin{aligned} & n\left(\mathrm{NH}_{3}\right)=\left(1 \times 10^{6}\right) / 17=5.88 \times 10^{4}(58824) \\ & (\mathrm{mol}) \end{aligned}$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below allow up to full calculator display

2.1.3 Amount of Substance

		AND Theoretical yield: $\begin{aligned} & n\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=5.88 \times 10^{4} / 2=2.94 \times 10^{4} \\ & (29412)(\mathrm{mol})(1) \end{aligned}$ Actual yield: $\begin{aligned} & n\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=1.35 \times 10^{6} / 60=2.25 \times 10^{4} \\ & (22500)(\mathrm{mol})(1) \\ & \% \text { yield }=\left(2.94 \times 10^{4} / 2.25 \times 10^{4}\right) \times 100 \%= \\ & 76.5(\%)(1) \end{aligned}$		For $2^{\text {nd }}$ and $3^{\text {rd }}$ marks, allow calculation in mass. Theoretical mass yield: $m\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)=60 \times 5.88 \times 10^{4} / 2=1.764$ tonne $\%$ yield $=(1.35 / 1.764) \times 100=76.5 \%$ allow 76% (2 sig figs) up to calculator answer correctly rounded from previous values allow ecf from calculated actual and theoretical yields
		Total	3	
5	i	$\mathrm{P}_{4}+6 \mathrm{Br}_{2} \rightarrow 4 \mathrm{PBr}_{3}$	1	ignore state symbols
	ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE $\begin{aligned} & \text { If answer }=3.01 \times 10^{21} \text { award } 3 \text { marks } \\ & M_{r}\left(\mathrm{PBr}_{3}\right)=270.7\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)(1) \\ & n\left(\mathrm{PBr}_{3}\right)=1.3535 / 270.7=5.000 \times 10^{-3} \mathrm{~mol}(1) \\ & \text { number of molecules }=5.000 \times 10^{-3} \times 6.02 \times \\ & 10^{23}=3.01 \times 10^{21} \text { molecules }(1) \end{aligned}$	3	If there is an alternative answer, check to see if there is any ecf credit possible using working below. allow in working shown as $28.1+35.5 \times 4$ allow ecf from incorrect molar mass of PBr_{3} allow $0.005(00)$ (mol) for two marks allow ecf for incorrect amount of PBr_{3} allow calculator value or rounding to 3 significant figures or more but ignore 'trailing' zeroes, e.g. 0.200 allowed as 0.2 do not allow any marks for: $1.3535 \times 6.02 \times 10^{23}=8.15 \times 10^{23}$
	ii	Pyramidal (1) (because there are) 3 bonded pairs and 1 lone pair (around the central phosphorus atom) (1) and electron pairs repel each other as far apart as possible so will take on a tetrahedral arrangement (giving a pyramidal shape overall) (1)	3	
		Total	7	
6		FIRST check the molar mass on answer line MUST be derived from $p V=n R T$, Award 4 marks for calculation for:	5	FULL ANNOTATIONS MUST BE USED

- answer = 70
- OR answer that rounds to 69.9 OR 70.0

Rearranging ideal gas equation to make n subject

$$
n=\frac{p V}{R T} \checkmark
$$

Substituting all values including conversion to
$P a$ and m^{3}

$$
\begin{aligned}
& n=\frac{\left(101 \times 10^{3}\right) \times\left(82.5 \times 10^{-6}\right)}{8.314 \times 373} \\
& n=2.68693073 \times 10^{-3} \rightarrow 2.69 \times 10^{-3}(\mathrm{~mol}) \\
& \begin{array}{l}
\text { unrounded }
\end{array}
\end{aligned}
$$

Calculation of molar mass, M

$$
\begin{aligned}
& M=\frac{m}{n}=\frac{0.1881}{2.68693073 \times 10^{-3}}=70(.0)\left(\mathrm{g} \mathrm{~mol}^{-1} .\right. \\
& \rightarrow \frac{0.1881}{2.69 \times 10^{-3}}=69.9\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

Molecular formula of \mathbf{D}
$\mathrm{C}_{5} \mathrm{H}_{10} \checkmark$

IF candidate has failed to derive suitable value of n, ALLOW value of M from 0.1881 AND 24000 with alkene closest to calculated value for last 2 marks
See Guidance column.

If there is an alternative answer, check to see if there is any ECF credit possible using working below
$1^{\text {st }}$ mark may be implicit by direct substitution of correct values below into rearranged equation.

ONLY award this mark if \boldsymbol{n} has been derived from correct rearranged ideal gas equation ALLOW 3 SF up to calculator value, correctly rounded

NOTE: ALLOW $69.9 \rightarrow 70.0$ AND 70 (2 SF)
Calculator from unrounded: 70.00552634

ALLOW any unambiguous structure ALLOW ECF provided that formula given is an alkene and matches M calculated from 0.1881 AND $p V=n R T$
$\boldsymbol{M}=\frac{0.1881}{82.5 / 24000}$ OR $\frac{0.1881}{3.4375 \times 10^{-3}}$
= 54.72 OR 54.7 OR $55 \checkmark$
ALLOW 54.68 from use of 3.44×10^{-3}

From 54.72, ONLY ALLOW $=\mathrm{C}_{4} \mathrm{H}_{8} \checkmark$

Examiner's Comments

Most candidates realised the need to use the ideal gas equation. The equation was usually rearranged correctly, with substituted values for p, V, R and T being added. Pressure and volume were not always converted correctly into Pa and m^{3}, creating problems for subsequent parts. Many candidates attempted to convert from cm^{3} to m^{3} by multiplying by 10^{-3} rather than 10^{-6}.

Candidates usually obtained a value for n, although those who had struggled with unit conversion obtained values that differed by powers of 10 . Finally, candidates needed to derive the molar mass using their value of n and the mass of the alkene. Some candidates over-rounded their value of n, introducing an error in calculating the molar mass. Surprisingly, an appreciable number of candidates wrote their value of n on the answer line rather than the molar mass indicated by the answer prompt. This

2.1.3 Amount of Substance

				IF 153 is used for the molar mass ALLOW 1 mark total for 5.90×10^{21} Examiner's Comments Use of the relative mass of barium to calculate moles of barium oxide was a common error but these candidates were usually able to pick up one mark for correctly multiplying their moles by the Avogadro constant. Some candidates correctly calculated moles but then divided by two thus losing the final mark.
b		Barium chloride does not conduct electricity when solid AND because it has ions which are fixed (in position / in lattice) \checkmark Barium chloride conducts when in aqueous solution AND because it has mobile ions	2	IGNORE use of 'free' instead of 'mobile' ALLOW ions are not free to move ALLOW ions are held (in position / in lattice) ALLOW ions are not mobile IGNORE charge carriers DO NOT ALLOW electrons moving ALLOW one mark for comparison that does not identify (s) and (aq). Examiner's Comments Many precise answers gained full marks by describing the fixed position of ions in a lattice and the mobility of ions in aqueous solution. Delocalised or free electrons were occasionally mentioned. Vague answers often used the terms 'free' instead of mobile, 'charge carrier' instead of ion and 'carry a charge' instead of conduct electricity.
	ii	Test for sulfate $/ \mathrm{SO}_{4}{ }^{2-}$ White precipitate forms (when barium chloride solution is mixed with a solution containing sulfate ions)	2	IGNORE hydrochloric acid ALLOW white solid IGNORE cloudy DO NOT ALLOW test result linked to incorrect anion Examiner's Comments There was some confusion with the displacement reactions of halogens, the test for halide ions and the use of silver nitrate but the majority of students could recall the use of aqueous barium chloride to test for sulfate ions. Occasionally candidates described the use of dilute hydrochloric acid to remove carbonate ions from solution before their creditworthy description of the sulfate test.
	$\begin{aligned} & i i \\ & i \end{aligned}$	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2 award 2 marks $\begin{aligned} & M\left(\mathrm{BaCl}_{2}\right)=((137.3+(35.5 \times 2)) \\ & =\underline{208.3}\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW 208 ($\mathrm{g} \mathrm{mol}^{-1}$)

2.1.3 Amount of Substance

	$244.3-208.3=36$ AND $36 / 18=2$		

2.1.3 Amount of Substance

				scored three or four marks. Weaker candidates often divided the mass of CO_{2} by 700 and failed to achieve a meaningful answer. Candidates should be encouraged to start multistep calculations by considering amounts in moles, rather than just experimenting with the data provided in the question. Answer: 259 litres
		Total	4	
9	i	Elimination OR dehydration \checkmark	1	Examiner's Comments Many candidates correctly named the type of reaction. There were a significant number of incorrect responses, the most common of which included hydrolysis, dehydrogenation and condensation.
	ii	IF answer = 14.0 OR 14.1 g award 3 marks \qquad \qquad actual $n\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \text { produced }=\frac{5.00}{68.0}=0.0735(\mathrm{~mol})$ theoretical $n\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}\right)=n\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)=0.0735 \times \frac{100}{45.0}=0.163(\mathrm{~mol})$ Mass of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}=0.163 \times 86.0=14.0(\mathrm{~g}) \mathrm{OR}$ 14 g OR $14.1 \mathrm{~g} \sqrt{ }$ (use of unrounded values in calculator throughout)	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW ECF at each stage ALLOW 3 SF up to calculator value correctly rounded for intermediate values ALLOW expected mass $\mathrm{C}_{5} \mathrm{H}_{8}=5.00 \times \frac{100}{45.0}=11.111(\mathrm{~g})$ ALLOW Mass $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$ reacted $=0.0735 \times 86.0=$ 6.321 (g) ALLOW Mass of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$ used $=6.321 \times \frac{100}{45.0}=14.0$ OR 1 ALLOW 2 SF up to calculator value correctly rounded for mass of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$ Note: 2.84 OR 2.85 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 13.76 OR 13.8 would get 2 marks (use of 0.16 for moles $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$) Examiner's Comments Candidates coped well with this calculation based on percentage yield. Most were able to calculate the moles of cyclopentene produced and the strongest

2.1.3 Amount of Substance

				scaled this correctly to give the moles of cyclopentanol required. A common mistake was to scale by a factor of $45 / 100$, rather than 100/45. However, error carried forward marks were awarded and the majority of candidates scored two or three marks. Answer: 14.1 g
		Total	4	
1	i	$\frac{2 \times 0.005}{0.58} \times 100=1.72 \%$	1	ALLOW 2\% OR 1.7\% up to calculator value of 1.724137931 Examiner's Comments This part was poorly answered. Candidates rarely seemed to understand the relationship between the precision of the balance and the uncertainly in taking two readings - hence 0.86%, half of 1.72%, was a common error. Answer = 1.72\%
	ii	Use balance weighing to $3 /$ more decimal places OR Use a larger mass/amount $\square \checkmark$	1	ALLOW more precise/more accurate/ more sensitive/higher resolution/smaller division IGNORE 'less error/smaller interval balance’ IGNORE any reference to lid on crucible (water can't escape) IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results /larger sample size, etc. Examiner's Comments Correct answers suggested using a larger mass of the salt or a more accurate balance with more decimal places. Many responses instead discussed repeating the experiment and taking an average, or using a lid.
	ii	Heat to constant mass \checkmark	1	ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change IGNORE 'heat for longer' Needs link to constant mass Examiner's Comments This was a good question to distinguish practical ability. Many candidates suggested simply 'heating

			for longer' or 'until no further colour change' but didn't link this to the idea of heating to constant mass.
	Total	3	
1 1	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 63.62 award 2 marks $\frac{(63 \times 69.17)+(65 \times 30.83)}{100}$ OR 63.6166 OR 63.617 , $=63.62 \text { (to } 2 \mathrm{DP} \text {) } \sqrt{ }$ IGNORE any units with A_{r}	2	ALLOW ECF for a correct calculation to 2 DP if: - \%s have been used with wrong isotopes i.e. $\frac{(63 \times 30.83)+(65 \times 69.17)}{100} \rightarrow 64.38$ OR - decimal places for ONE \% have been transposed, i.e. $69.71 \rightarrow \mathbf{6 3 . 9 6} ; 30.38 \rightarrow \mathbf{6 3 . 3 2}$ Examiner's Comments This part was mostly correct. Low-scoring candidates sometimes produced errors in averaging or rounding. Most final answers were given to the required two decimal places. Answer $=63.62$
	FIRST CHECK ANSWER ON THE ANSWER LINE If answer $=3.97 \times 10^{22}($ from 63.62) award 2 marks If answer $=3.98 \times 10^{22}$ (from 63.5) award 2 marks Using 63.62: correct A_{r} of Cu from 21(b)(i) See bottom of answer zone $n(\mathrm{Cu})=\frac{5.00 \times 0.840}{63.62}=\frac{4.2}{63.62}=0.066(0)(\mathrm{mol}) \checkmark$ Cu atoms $=0.0660 \times 6.02 \times 10^{23}=3.97 \times 23$ 10^{22}, Must be calculated in standard form AND to 3 SF OR \qquad Using 63.5: A_{r} of $C u$ from periodic table $n(\mathrm{Cu})=\frac{5.00 \times 0.840}{63.5}=\frac{4.2}{63.5}=0.0661(\mathrm{~mol})$	2	If there is an alternative answer, check to see if there is any ECF credit possible SEE answer from $\mathbf{2 1 b} \mathbf{(i)}$ at bottom of answer zone ALLOW correct answer from 3 SF up to calculator value of 0.06601697579 ALLOW incorrect $n(\mathrm{Cu}) \times 6.02 \times 10^{23}$ correctly calculated to 3 SF AND in standard form For ECF, A_{r} must have been used for $n(C u)$ \qquad ALLOW correct answer from 3 SF up to calculator

2.1.3 Amount of Substance

		$\begin{aligned} & \mathrm{M} 1 \mathrm{Mol} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}=3.00 \times 10^{-2} \times \frac{35.0}{1000}=1.05 \mathrm{x} \\ & 10^{-3} \mathrm{~mol} \checkmark \\ & \mathrm{M} 2 \mathrm{Mol} \text { of } \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\frac{1.05 \times 10^{-3}}{3}=3.5(0) \times 10^{-4} \\ & \mathrm{~mol} \checkmark \\ & \mathrm{M} 3=342.3 \checkmark \\ & \mathrm{M} 4 \mathrm{Mass}_{\mathrm{Al}}^{2}\left(\mathrm{SO}_{4}\right)_{3}=3.5(0) \times 10^{-4} \times 342.3 \\ & \text { and } \\ & =0.120 \mathrm{~g} \checkmark \\ & \text { Answer must be } 3 \mathrm{sf} \end{aligned}$		ALLOW 0.00105 mol ALLOW 0.00035(0) mol ALLOW 342 DO NOT ALLOW 0.12 Examiner's Comments This open style calculation would have usually proved difficult for the typical AS candidate but this year a significant majority of candidates were able to secure all four marks.
		Total	4	
1 4		First check the answer line. If answer $=1200 \mathrm{~cm}^{3}$ award 3 marks. $\begin{aligned} & \mathrm{Mol} \text { of } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=\square=2(.00) \times 10^{-2} \mathrm{OR} \\ & 0.02(00) \mathrm{mol} \sqrt{ } \end{aligned}$ Mol of gas $=2(.00) \times 10^{-2} \times 5 / 2=5(.00) \times 10^{-2}$ OR 0.05(00) mol $\sqrt{ }$ Vol of Gas $=0.05 \times 24000=1200 \mathrm{~cm}^{3} \checkmark$	3	If answer $=960 \mathrm{~cm}^{3}$ award 2 marks. If answer $=240 \mathrm{~cm}^{3}$ award 2 marks. ALLOW ECF for answers to at least two significant figures up to calculator value, correctly rounded ALLOW separate numbers of mol of each gas for $\mathrm{M} 2\left(0.04(00) \mathrm{mol} \mathrm{NO}_{2}\right.$ and $\left.0.0100 \mathrm{~mol} \mathrm{O}_{2}\right)$ ALLOW a second mark if only volume of $\mathrm{O}_{2}(240$ $\left.\mathrm{cm}^{3}\right)$ OR only volume of $\mathrm{NO}_{2}\left(960 \mathrm{~cm}^{3}\right)$ is calculated Examiner's Comments This seemingly difficult calculation was answered successfully by all but a relatively small handful of candidates.
		Total	3	
1	a	First check the answer line. If answer $=1.7(0) \times 10^{-3}$ award 2 marks. \qquad M1 (Dividing by 6.02×10^{23}) Number of N_{2} molecules $=\frac{5.117 \times 10^{20}}{6.02 \times 10^{23}}=8.5 . \mathrm{x}$ 10-4 OR 0.85×10^{-3} OR 0.085×10^{-2} OR 0.0085 x 10^{-1} OR $0.00085 \checkmark$ M2 (Correct conversion of molecules to atoms + standard form) M1 $\times 2$ and in standard form \checkmark From 0.0085, answer $=2 \times 0.00085=0.00170$ $=1.7(0) \times 10-3$	2	ALLOW one mark for 0.17×10^{-2} OR 0.017×10^{-1} OR 0.0017 (not standard form) ALLOW one mark for 4.25×10^{-4} (dividing by 2 in M2 + standard form) ALLOW one mark for 6.16×10^{44} (multiplying by 6.02×10^{23} in M1 + standard form Examiner's Comments This proved to be one of the more difficult questions on the paper. A significant number of candidates

			Alternative method M1 (Correct conversion of molecules to atoms) $=5.117 \times 10^{20} \times 2=1.02(34) \times 10^{21}$ OR 10.2(34) $\times 10^{20}$ OR 102.(34) $\times 10^{19}$ etc M2 (Correct use of $6.02 \times 10^{23}+$ standard form) $\frac{1.02(34) \times 10^{21}}{6.02 \times 10^{23}}=1.7(0) \times 10^{-3}$		were able to secure one mark by dividing by Avogadro's constant but failed to convert the number of molecules calculated into number of atoms present.
	b	i	(Actual) number of atoms of each element present in a molecule \checkmark	1	ALLOW 'compound' for 'molecule' IGNORE 'simplest whole' before 'number' ALLOW 'actual ratio' IGNORE 'ratio' alone DO NOT ALLOW 'simplest ratio' Examiner's Comments Many candidates were successful in describing the term 'molecular formula' but weaker candidates gave answers which confused terms such as atoms and molecules. By far the most common erroneous response was 'The number of atoms in a molecule'.
		ii	$\mathrm{HNO}_{2} \checkmark$	1	ALLOW O2HN etc Examiner's Comments Weaker candidates convinced themselves that the acid formed when water is added to nitrogen dioxide was HNO_{3}. Better candidates were able to work out the product would have the formula $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ but failed to convert this to its simplest form.
			Total	4	
6	a	i	carbon dioxide lost/evolved/given off/or produced as a gas \checkmark	1	DO NOT ALLOW water or steam or CO_{2} evaporates Examiner's Comments Candidates who failed to state that the gas being lost was CO_{2} could not access the mark for this question. Vague answers relating to water being produced, products being gases, products being lost or a gas evolved were often given by Candidates.
		ii	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer $=1.85$ OR 1.845 g award 3 marks \qquad $n\left(\mathrm{HNO}_{3}\right)$ $\begin{aligned} & =1.25 \times \frac{20.0}{1000}=0.0250 \mathrm{~mol} \downarrow \\ & n\left(\mathrm{SrCO}_{3}\right) \\ & \quad=\frac{0.0250}{2}=0.0125 \mathrm{~mol} \end{aligned}$	3	If there is an alternative answer, check to see if there is any ECF credit possible

2.1.3 Amount of Substance

2.1.3 Amount of Substance

2.1.3 Amount of Substance

			AND Use of $T=293 \mathrm{~K} \checkmark$ Final answer $p=4.46 \times 10^{6}(\mathrm{~Pa}) \checkmark$ Must be calculated in standard form AND to 3 SF	1	$p=\frac{4.25 \times 8.314 \times 20}{2.32 \times 10^{-3}}=3.05 \times 10^{5}$ Incorrect volume conversion $p=\frac{4.25 \times 8.314 \times 293}{2.32 \times 10^{-6}}=4.46 \times 10^{9}$ No volume conversion $p=\frac{4.25 \times 8.314 \times 293}{2.32}=4.46 \times 10^{3}$ No standard form $=4460000$ Examiner's Comments This was a new addition to the OCR specification as part of the curriculum changes. The vast majority of candidates made a good attempt at this calculation which required both the rearrangement of a formula and the conversion of units of temperature and volume. The conversions and calculation did not prove that difficult for many candidates however answers were often not given to three significant figures or quoted in standard form resulting in the loss of one mark. Candidates clearly need to develop their mathematical skills in order to access the 20\% of marks available for quantitative work. Answer $=4.46 \times 106(\mathrm{~Pa})$
			Total	4	
$\begin{aligned} & 1 \\ & 8 \end{aligned}$	a	i	Diagram of labelled reaction vessel for reaction \checkmark	1	ALLOW (conical) flask, test-tube or boiling tube. DO NOT ALLOW volumetric flask, beaker, measuring cylinder DO NOT ALLOW delivery tube below reacting solution ALLOW any of these diagrams. ALLOW a single line for the tube IGNORE Sealed end of delivery tube
			Labelled (gas) syringe OR diagram of gas collection over water in a labelled measuring cylinder / inverted burette. AND closed system with a tube connecting reaction vessel to gas collection apparatus \checkmark	1	

2.1.3 Amount of Substance

2.1.3 Amount of Substance

				was still awarded as an error carried forward. Answer $=40.1$
	b	Less (volume / products) AND Smaller amount / fewer moles / fewer atoms of the metal OR element reacting \checkmark	1	IGNORE higher relative atomic mass / molar mass ALLOW a calculation showing that moles and volume are less $\begin{aligned} & n\left(\mathrm{H}_{2}\right)=0.162 / 87.6=0.0018493156 \\ & \text { Volume }=0.0018493156 \times 24000=44(.4) \mathrm{cm}^{3} \end{aligned}$ Examiner's Comments This question was not well answered. Most candidates did not specify that there would be fewer moles of the metal. Many candidates were unable to grasp the concept that the amount of substance was linked to mass and relative atomic mass and that a larger atomic mass would lead to a smaller number of moles of the metal and hence a decrease in the volume of hydrogen produced.
		Total	6	
1 9		Method 1: 100\% OR (only) one product OR no waste product OR addition (reaction) \checkmark Method 2: < 100\% AND two products OR (also) produces NaBr OR (There is a) waste product OR substitution (reaction) \checkmark	2	ALLOW co-product or by-product for waste product For '< 100\%' ALLOW not 100\% OR method 2 has a low(er) atom economy (compared to method 1) IGNORE produces $\mathrm{Br}^{-} / \mathrm{Na}^{+}$ DO NOT ALLOW incorrect waste products e.g. Br_{2}, $\mathrm{HBr}, \mathrm{Br}, \mathrm{Na}$ ALLOW correctly calculated value of 42 or 41.8 up to calculator value of 41.83154324 correctly rounded for second mark DO NOT ALLOW incorrect values for the atom economy of method 2 . ALLOW ONLY 1 mark for a statement that both methods have 100% atom economy. Examiner's Comments The majority of candidates recognised that the preparation of butan-2-ol from but-2-ene was an addition reaction with an atom economy of 100%. Over half the candidates appreciated the preparation of butan-2-ol from 2-bromobutane resulted in the formation of a by-product and stated that the atom economy would be less than 100%, with the strongest candidates providing a correctly calculated

				value of 41.8%. Some candidates incorrectly identified the by-product as either Na or Br , so did not receive the second mark. A small proportion of candidates did not interpret the reaction scheme sufficiently and simply stated that both methods would have an atom economy of 100%.
	b	FIRST, CHECK THE ANSWER ON ANSWER LINE IF mass $=8.21$ (g) award 3 marks Actual $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right) \text { produced }=\frac{3.552}{74}=0.048(\mathrm{~mol}) \checkmark$ theoretical $\begin{aligned} & n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)=0.048 \times \frac{100}{80}=0.06 \\ & (\mathrm{~mol}) \checkmark \end{aligned}$ Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}=0.06+136.9=8.21(\mathrm{~g}) \checkmark$ 3 SF required	3	ALLOW ECF at each stage ALLOW expected mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}=3.552 \times \frac{100}{80}=4.44$ (g) ALLOW Mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ reacted $=0.048 \times 136.9=$ 6.5712 (g) ALLOW Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ used $=6.5712 \times \frac{100}{\frac{100}{80}}=8.21$ (g) DO NOT ALLOW 8.22 (from use of 137 as M_{r} of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$) Examiner's Comments In general candidates coped well with this more demanding calculation based on percentage yield. Most were able to calculate the moles of butan-2-ol and the strongest scaled this correctly to give the moles of 2-bromobutane required. A common mistake was to scale by a factor of 0.8 , rather than 1.25 , however error carried forward marks were awarded and the majority of candidates scored two or three marks. Answer: 8.21 g
		Total	5	
$\begin{array}{\|l} 2 \\ 0 \end{array}$	a	Check the answer line. If answer $=1080 \mathrm{~cm}^{3}$ award 2 marks Amount of $\mathrm{Eu}=9.12 / 152.0=0.06(00) \mathrm{mol} \checkmark$ Amount of $\mathrm{O}_{2}=0.0600 \times 3 / 4=0.045(0) \mathrm{mol}$ and Volume of $\mathrm{O}_{2}=0.0450 \times 24000=1080 \mathrm{~cm}^{3} \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' eg 0.200 is allowed as 0.2 . ALLOW incorrectly calculated amount of Eu $\times 3 / 4$ and $\times 24000$ correctly calculated for 2 nd mark Eg 2605.7 would come from $(9.12 / 63) \times 3 / 4 \times$ 24000 (note: a mass of $\mathrm{Eu} \times 3 / 4$ and $\times 24000$ would not score M2)

				Examiner's Comments This potentially difficult calculation was well addressed by candidates and many scored both marks available.
b	i	The simplest whole number ratio of atoms (of each element) present in a compound \checkmark	1	ALLOW smallest OR lowest for simplest ALLOW molecule for compound Examiner's Comments This was a definition that appears directly in the specification but has not featured recently in F321 and as such presented a significant number of candidates with a challenge. Where this mark was not secured the common errors were to either omit the 'whole number' part of the definition or to omit the idea that the empirical formula is actually a ratio of atoms. For future calculations such as this, centres need to be aware the common errors to be avoided in are the use of the atomic number in determining the number of moles of Eu and an incorrect application of a difficult 4:3 stoichiometric ratio.
	ii	Check the answer line. If answer $=\mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Tm}_{2}$ award 2 marks $\mathrm{O}=30.7 / 16.0 \mathrm{~S} \quad 15.4 / 32.1 \mathrm{Tm}=53.9 / 168.9$ OR $1.9(2) \mathrm{mol} 0.480 \mathrm{~mol} 0.319 \mathrm{~mol} \checkmark$ $\mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Tm}_{2} \checkmark$	2	ALLOW 0.479 OR 0.48 for mol of S ALLOW 0.32 for mol of Tm DO NOT ALLOW $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ as empirical formula IGNORE $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ if seen in working. Examiner's Comments This question perhaps demonstrated the extent to which candidates rely upon rote application of a 'mathematical' method without fully understanding what they are actually attempting to do. Nearly all candidates were able to convert a ratio by mass to a ratio by moles of atoms, by dividing the mass ratios by the relevant relative atomic masses. These candidates were further able to obtain a unit value for one atom by the mathematical operation of dividing all values by the smallest number. This gave a formula of $\mathrm{TmS}_{1.5} \mathrm{O}_{6}$ and many candidates were convinced that increasing the value of S atoms from 1.5 to 2 (the nearest whole number) would meet the requirements that an empirical formula has to have whole number values of atoms. Only the stronger candidates were able to realise that the initial ratio calculated needed to be doubled to obtain integer values which kept the same ratio of atoms.

2.1.3 Amount of Substance

		Total	

2.1.3 Amount of Substance

		to give $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O} \checkmark$		ALLOW any order of atoms Examiner's Comments Calculating empirical formulae is a skill which most candidates are familiar with and consequently the vast majority of candidates were awarded both marks.
		Total	2	
2	a	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=2.88 \mathrm{dm}^{3}$ award 2 marks Mol of $\mathrm{H}_{2}=0.12 \mathrm{~J}$ Volume of $\mathrm{H}_{2}=0.12 \times 24.0=2.88 \mathrm{dm}^{3} \checkmark$	2	ALLOW ECF from incorrectly calculated moles of H_{2} $0.08 \times 24=1.92$ gets 1 mark Examiner's Comments Weaker candidates forgot to consider the stoichiometric ratio between Al and H_{2} but were still able to gain credit for the correct use of the molar gas volume, leading to an answer of $1.92 \mathrm{~cm}^{3}$, rather than the expected $2.88 \mathrm{~cm}^{3}$.
	b	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=10.7 \mathrm{~g}$ award 2 marks Correctly calculates molar mass of $\mathrm{A} / \mathrm{Cl}_{3}=$ 133.5 g V Mass of $\mathrm{A} / \mathrm{C} / 3$ formed $=0.0800 \times 133.5=10.7$ (g) \checkmark	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for incorrect molar mass of $\mathrm{A} / \mathrm{C}_{3}$ multiplied by 0.0800 and correctly rounded to 3 significant figures Examiner's Comments This was a slightly easier calculation and as a result many candidates scored both marks, with only a few forgetting to give the answer to three significant figures required.
	c	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=200(.0) \mathrm{cm}^{3}$ award 2 marks Correctly calculates moles of $\mathrm{HC} /$ needed $=$ $0.0800 \times 3=0.24(0) \mathrm{mol} \checkmark$ Volume of $\mathrm{HCl}=0.24(0) \times 1000 / 1.2=200 \mathrm{~cm}^{3}$ \checkmark	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for incorrect mol of $\mathrm{HCl} \times 1000 / 1.20$ ALLOW 66.7 (66.67 or 66.667 etc) for 1 mark DO NOT ALLOW 66.6 (66.66 or 66.666 etc) Examiner's Comments Nearly all candidates were able to convert the amount of hydrochloric acid into a volume and so

2.1.3 Amount of Substance

				the common error in this calculation occurred when the stoichiometric ratio between aluminium and the acid was not taken into account.
		Total	6	
2	i	$\left(\frac{136.9}{291.1} \times 100\right)=47 \%$	1	ALLOW 47 up to calculator value correctly rounded. 47.0 or 47.03 or 47.029 will be correct common answers IGNORE any working shown. Examiner's Comments This was a very well answered question and most candidates were able to calculate to the atom economy for the reaction.
	ii	NaBr OR LiBr \checkmark	1	ALLOW correct name or formula DO NOT ALLOW HBr (it is an acid) Examiner's Comments This novel question required candidates to suggest a way of increasing the atom economy by using an alternative reactant. The most able correctly identified that either sodium or lithium bromide would be an appropriate replacement for potassium bromide. The most common response was HBr which was not credited as the question specified a chemical other than an acid should be suggested.
		Look at answer if 88.8\% AWARD 3 marks if 88.75\% AWARD 2 marks (not 3 sig. fig.) Moles of butan-1-ol $=0.08(00) \checkmark$ Moles of 1-bromobutane $=0.071(0) \checkmark$ $\%$ yield $=88.8 \%$,	3	Answer MUST be to 3 significant figures. ALLOW ECF but do not allow a yield $>100 \%$ ALLOW Mass of 1-bromobutane expected $=10.952$ g Examiner's Comments This was a very well answered question and the majority of responses were clearly laid out. Consequently most of the candidates scored two or three marks. Some candidates gave their final answer to more than three significant figures, despite the prompt in the question. Other candidates decided to over-round the actual yield of 1 bromobutane to one significant figure which led to a yield of 87.5%.
		Total	5	
5	i	$\begin{array}{lll}\text { Amount of each element mark } \\ \text { H } \\ \frac{0.025}{1.0} & \frac{0.300}{16.0} & \frac{0.175}{14.0}\end{array}$	2	

2.1.3 Amount of Substance

			$\begin{aligned} & =0.0250 .018750 .0125(1) \\ & \text { Simplest whole number ratio empirical formula } \\ & \frac{0.025}{0.0125}=2 \quad \frac{0.01875}{0.0125}=1.5 \\ & \frac{0.0125}{0.0125}=1 \end{aligned}$		allow 2 marks for correct answer without working
		ii	acid: HNO_{3} AND base: $\mathrm{NH}_{3}(1)$	1	allow atoms within HNO_{3} and NH_{3} in any order
			Total	3	
	a	i	CO is toxic	1	allow responses linked to effect of CO in blood
		ii	Calculation: $n($ butane $)=600 / 58.0=10.34(\mathrm{~mol})$ AND $n\left(\mathrm{O}_{2}\right)$ required $=6.5 \times 10.34=67.2(\mathrm{~mol})$ (1) $n\left(\mathrm{O}_{2}\right)$ consumed $=1.50 \times 10^{3} / 24.0=62.5(\mathrm{~mol})$ OR volume O_{2} required for complete combustion $=$ $67.2 \times 24.0 / 1000=1.61 \mathrm{~m}^{3}(1)$ Conclusion: incomplete combustion / stove not safe to use AND 62.5 < 67.2 OR 1.61 > 1.50 (1)	3	using 1 : 6.5 ratio allow number rounding to 67
	b		Rearranging ideal gas equation to make n subject $n=p V / R T(1)$ Substituting all values taking into account conversion of units $\begin{aligned} & n=\frac{\left(101 \times 10^{3}\right) \times\left(2.00 \times 10^{-3}\right)}{8.314 \times 297} \\ & n=0.0818 \ldots(\mathrm{~mol})(1) \end{aligned}$ number of C atoms in alkane $=0.0818 / 0.0117=$ 7 $\text { alkane }=\mathrm{C}_{7} \mathrm{H}_{16}(1)$	4	allow 3 SF up to calculator value of 0.08180595142 , correctly rounded allow ecf from incorrect n
			Total	8	
2		i	$\mathrm{Sr}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Note: all state symbols required	1	allow multiples
		ii	$\begin{aligned} & n(\mathrm{Sr})=n\left(\mathrm{Sr}^{2+}\right)=0.200 / 87.6=2.28 \times 10^{-3}(1) \\ & {\left[\mathrm{Sr}^{2+}\right]=2.28 \times 10^{-3} \times 1000 / 250=9.13 \times 10^{-3}} \\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \end{aligned}$	2	allow ecf

			Greater volume with Ca AND larger amount / more moles of Ca OR A_{r} Ca is smaller (1) $n(\mathrm{Ca})=0.200 / 40.1=0.005(0)(\mathrm{mol})(1)$ volume H_{2} with $\mathrm{Sr}=55 \mathrm{~cm}^{3}$ AND volume with $\mathrm{Ca}=120 \mathrm{~cm}^{3}$ OR $65 \mathrm{~cm}^{3}$ more H_{2} with Ca (1)	3	ora allow values up to calculator values allow volumes $\pm 1 \mathrm{~cm}^{3}$
			Total	6	
	a		$\begin{aligned} & n(\mathrm{Eu})=0.0019 / 152.0=1.25 \times 10^{-5}(1) \\ & \text { Atoms of } \mathrm{Eu}=1.25 \times 10^{-5} \times 6.02 \times 10^{23}=7.5 \times \\ & 10^{18}(1) \end{aligned}$	2	allow 0.0000125 Must be standard form AND two significant figures allow ecf from incorrect amount allow 2 marks for correct answer without working
	b		$\begin{aligned} & n\left(\mathrm{H}_{2}\right)=144 / 24000=6(.00) \times 10^{-3}(\mathrm{~mol})(1) \\ & n(\mathrm{Eu})=0.608 / 152.0=4(.00) \times 10^{-3}(\mathrm{~mol}) \\ & \text { AND } \\ & \text { ratio } n(\mathrm{Eu}): n\left(\mathrm{H}_{2}\right)=2: 3(1) \\ & 2 \mathrm{Eu}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}(1) \end{aligned}$	3	Look for evidence of $2: 3$ anywhere. Could be within an attempted equation. ignore state symbols
			Total	5	
			Determining limiting factor $n(\mathrm{Zn}) 0.27 / 65.4=0.0041 \mathrm{~mol}$ AND $n\left(\mathrm{CaCO}_{3}\right)=0.38 / 100.1=0.0038 \mathrm{~mol}$ so Zn is in excess (1) Determining volume of CO ratio $1: 1$, so $n(\mathrm{CO})=0.0038(\mathrm{~mol})$ vol. $\mathrm{CO}=0.0038 \times 24.0=0.091 \mathrm{dm}^{3}=91\left(\mathrm{~cm}^{3}\right)$ (1)	2	evidence of $0.27 / 65.4$ is required (or using the mass ratio to predict 0.116 g of CO from 0.27 g Zn) or use of the mass ratio to predict 0.106 g CO from $0.38 \mathrm{~g} \mathrm{CaCO}_{3}$, and dividing by 28.0 to get 0.0038 mol CO allow 2 sig figs up to calculator answer allow second and third marks for correct final answer with no working allow 2 marks for $99 \mathrm{~cm}^{3}$ from excess Zn mass
		ii	heat until syringe stops moving / no further gas produced (1) wait until the gas has cooled (to room temperature) before measuring the volume owtte (1)	2	allow heat for longer than two minutes allow heat a greater mass
			Total	4	

